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Abstract
We present a magnetization study of low density YBa2Cu3O7−x ceramics carried out in
magnetic fields H such that 0.5 Oe < H < 50 kOe. It was demonstrated that superconducting
links between grains may be completely suppressed either by a magnetic field H ∼ 100 Oe
(at low temperatures) or by an increase of temperature to above 70 K. This property of the
present samples allowed us to evaluate the ratio between the average grain size and the
magnetic field penetration depth λ. Furthermore, at temperatures T > 85 K, using low field
magnetization measurements, we were able to evaluate the temperature dependence of λ, which
turned out to be very close to predictions from conventional Ginzburg–Landau theory. Although
the present samples consisted of randomly oriented grains, specifics of magnetization
measurements allowed for evaluation of λab(T ). Good agreement between our estimation of the
grain size and the real sample structure provides evidence for the validity of this analysis of
magnetization data. Measurements of the equilibrium magnetization in high magnetic fields
were used for evaluation of Hc2(T ). At temperatures close to Tc, the Hc2(T ) dependence turned
out to be linear, in agreement with Ginzburg–Landau theory. The value of the temperature at
which Hc2 vanishes coincides with the superconducting critical temperature evaluated from low
field measurements, which is important evidence of the validity of both approaches to the
analysis of magnetization data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this work we present a detailed magnetization study of
low density ceramics of YBa2Cu3O7−x (Y-123). Data were
collected in magnetic fields 0.5 Oe � H � 50 kOe. The main
attention was paid to the analysis of reversible magnetization,
which provides information on equilibrium properties of the
superconducting state.

It turned out that superconducting links between the grains
are weak and can be suppressed either by a magnetic field
as low as 100 Oe (at low temperatures) or by increasing
temperature to above T = 70 K. As we discuss below, this
provides the possibility to study a system of non-interacting
grains for gaining information about the relation between the
grain size and the magnetic field penetration depth λ.

In magnetic fields H ∼ 1 Oe, an average grain size
of 3–5 μm is too small to capture even a single vortex
line, which makes the low field temperature dependence of
the sample magnetization M(T ) reversible at T > 70 K.
Analyzing reversible parts of the M(T ) curves, the temperature
dependence of the magnetic field penetration depth λ can be
obtained. Although the present samples consisted of randomly
oriented grains, specifics of magnetization measurements
allowed for an evaluation of λab(T ).

Magnetization measurements in fields H � 1 kOe probe
completely different physics. In this case, a mixed state is
established inside grains and magnetization data provide some
of its characteristics. Also here we were interested in reversible
magnetization data. As was demonstrated in [1], equilibrium
magnetization M(H, T ) data allow one to establish the
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Figure 1. (a) M versus H after zero-field cooling. A magnetic field was applied as illustrated in the inset. The solid and the dashed lines are
the best linear fits to the low and the intermediate parts of the M(H) curve (see figures 2 and 3). (b) Low field parts of the M(H) curves. The
inset shows results for the sample Y#1 on expanded scales. The straight lines are the best linear fits to data measured in |H | � 2 Oe.

Figure 2. An intermediate part of the M(H) curve for the sample
Y#2. The straight line is the best linear fit to data points between 120
and 200 Oe.

temperature dependence of the normalized upper critical field
Hc2. In this work, we extended measurements up to T ≈
0.995Tc and it was demonstrated that at temperatures close
to Tc the Hc2(T ) dependence is indeed linear in agreement
with Ginzburg–Landau theory. Linearity of Hc2(T ) also allows
for a rather accurate evaluation of Tc. We emphasize that Tc

determined in such a way is in perfect agreement with the
results of low field M(T ) measurements. We consider this
agreement as additional evidence that the scaling procedure
developed in [1] may serve as a reliable tool for the analysis
of magnetization data.

2. Experimental details

The samples were made from commercial YBa2Cu3O7−x

powder (Alfa Aesar). About 0.6 g of powder was suspended
in 6 g of 2-butanone by vigorous stirring. Small droplets of
this suspension were dropped with a syringe into hemispherical
(5 mm diameter) templates made from a flat ZrO2/BN plate
(IEPCO AG). The substrate was initially heated to 250 ◦C.
Rapid evaporation of the solvent lead to flotation of droplets
above the surface of the substrate. After several seconds of
such flotation, solid spherical samples were formed. These
spheres were sintered in a preheated furnace at 700 ◦C for

30 min. Thereafter, spherical samples were solid enough and
could be removed from the substrate and sorted by size. About
30 well formed spheres in the size range of 0.4–1.2 mm were
finally sintered in a Al2O3 crucible at 940 ◦C (heating rate
300 ◦C h−1) in an oxygen atmosphere for 24 h and this was
followed by cooling down to room temperature at a rate of
15 ◦C h−1.

Two samples from this series (Y#1, Y#2) were chosen for
measurements. Their shape was very close to an oblate sphere,
as schematically illustrated in the inset of figure 1(a). The two
samples had practically identical size 2a = (1.2 ± 0.02) mm
and 2c = (0.86 ± 0.03) mm with a/b = (1.4 ± 0.07). While
the volumes V = (0.65 ± 0.04) mm3 of the samples were
almost the same, the masses were slightly different: m(1) =
(2.4 ± 0.04) mg (Y#1) and m(2) = (2.0 ± 0.04) mg (Y#2).
Average densities of the samples were about 0.5 times that for
Y-123 single crystals.

All measurements were carried out on a SQUID
magnetometer with a 5 T magnet (Quantum Design).

3. Experimental results

The low temperature magnetization curves are shown in
figures 1 and 2. In very low fields, M is a linear function of
H (see the inset of figure 1(b)). The magnetic moment of a
superconducting sample may be written as

4π M

V
= H

1 + 4πχ N
, (1)

where N is the demagnetizing factor of a sample and χ

is its magnetic susceptibility. In the ideal Meissner state
4πχ = −1. Substituting in the experimental value of
dM/dH = (7.1 ± 0.4) × 10−5 emu Oe−1 and the sample
volume, we obtain N = 0.27, which is in very good
agreement with N = 0.29, calculated for an ellipsoid of the
corresponding shape [2]. This agreement shows that in fields
of some oersteds, superconducting links between grains are
strong enough to ensure the coherent superconducting state
throughout a sample. In slightly higher fields, however, the
deviation of the M(H ) curves from linearity indicates breaking
of intergrain links.
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Figure 3. Zero-field-cooled (ZFC) and field-cooled (FC) M(T ) curves. (a) H = 1 Oe. (b) H = 3 Oe. (c) H = 30 Oe.

In magnetic fields 50 Oe < H < 250 Oe, the M(H )

dependence is again close to a linear function (see figures 1(a)
and 2). In addition to exhibiting linearity, the M(H ) curve
is perfectly reversible (figure 2). This is a clear sign that
superconductivity of intergrain links is completely suppressed
by a magnetic field, while the field is not yet strong enough
to overcome pinning barriers and to penetrate inside grains.
The effective formation of the mixed state in grains starts for
substantially higher magnetic fields H > 0.5 kOe, which
is indicated by a saturation of the M(H ) curve presented in
figure 1(a).

Thus, in magnetic fields between 100 and 200 Oe, our
samples can be considered as ensembles of non-interacting
grains and their magnetic behavior should be similar to that of
a powder. In this magnetic field range, the derivative dM/dH
may be compared with the total volume of all superconducting
grains, VS = m/ρ, where m is the sample mass and ρ is the
bulk density of Y-123. Taking experimental values of dM/dH
and VS, we get (1/VS)(4πdM/dH ) = 0.58 < 1, i.e., the
volume, from which the magnetic field is expelled, is smaller
than VS. This means that the average grain size is comparable
with the magnetic field penetration depth λ.

Figure 3 displays temperature dependences of the sample
magnetization measured in three different magnetic fields. A
steep decline of the sample diamagnetism at T ≈ 60 K, which
may be seen in figure 3(a), corresponds to an effective critical
temperature of intergrain links. Another interesting feature is
that at temperatures T � 70 K and H = 1 Oe, the sample
magnetization is practically reversible, while the reversibility
completely disappears for H = 30 Oe (figure 3(c)). In the
case of H = 3 Oe (figure 3(b)), the sample magnetization is
close to being reversible although the distance between the two
magnetization curves is clearly visible.

The low field magnetic reversibility is not due to vortex
motion but rather because grains are too small to capture even

a single vortex line. Indeed, if the size of the grain in the
direction perpendicular to the field is smaller or of the order
of the ‘size’ of the magnetic flux quantum, D0 = √

�0/H (�0

is the magnetic flux quantum), no vortices can be created. As
an estimate we can use the result of [3] where it was shown that
the first vortex is created when the transverse size D ∼ 2D0. A
similar result was also obtained for very small superconducting
spheres [4]. Although [3] and [4] relate to somewhat different
geometries, the difference from our case is not expected to be
too big.

Considering data presented in figure 3, we may conclude
that in H = 1 Oe there are practically no grains that can
capture a vortex, while the magnetic field of 30 Oe is already
strong enough to create the mixed state in a considerable
number of grains. The values of D0 are equal to 4.5, 2.6, and
0.8 μm for magnetic fields of 1, 3, and 30 Oe, respectively.
This gives an estimate reff ≈ 3–5 μm for the biggest grains
and reff � 1μm for a large number of grains (reff is an effective
grain radius in the direction perpendicular to the magnetic
field).

In magnetic fields H � 1 kOe the mixed state is created
in practically all grains and one can see an extended range of
reversible magnetization, as illustrated in figure 4, in which the
difference M(T )–M(95 K) is plotted. In the following analysis
we shall use these equilibrium magnetization data in order to
evaluate a temperature dependence of the normalized upper
critical field by employing the scaling procedure introduced
in [1].

4. Analysis of experimental data

4.1. Superconducting grains in weak magnetic fields

The magnetic moment of a small superconducting sample
in the Meissner state depends on the ratio λ/r where 2r is
the size of the sample in the direction perpendicular to the
applied magnetic field. This is why low field magnetization

3



J. Phys.: Condens. Matter 20 (2008) 095222 I L Landau et al

Figure 4. ZFC and FC magnetization curves. The normal state
magnetization at T = 95 K was subtracted. The solid lines are
guides to the eye.

measurements may serve as a valuable tool for evaluation
of λ and its temperature dependence. Because the magnetic
moment of a single sample with r ∼ λ is too small to be
measured, powder or grain aligned samples were used [5–14].
Here, we apply a similar approach to analyze magnetization
data collected on ceramic samples.

For a superconducting sphere the normalized magnetiza-
tion is [15]

M(λ/r)

M0
= 1 − 3

λ

r
coth

r

λ
+ 3

λ2

r 2
, (2)

where M0 = M(λ = 0). Because the ratio λ/r enters
equation (2) in a rather complex way, the grain size distribution
may be important. Usually, this distribution is measured
independently and equation (2) is integrated over all grain
sizes [9]. In our case, this could not be done reliably. Instead
of this, we have analyzed how the grain size distribution may
influence magnetization results.

Three different grain size distributions, as shown in
figure 5(a), were used. In order to simplify the calculations,
the following n(r) were assumed:

n(r) = π

2
exp

{
− (r − 1)2

2σ

}
(3)

with σ = σ1 for r � 1 and σ = σ2 for r > 1.

The results of calculations are presented in figure 5(b)
on logarithmic scales. Only in the case of the widest grain
size distribution (σ2 = 1) does the M(r0/λ) curve deviate
noticeably from that for a single sphere. Furthermore, the
difference between the curves can practically be eliminated
by a parallel shift of the curve, which corresponds to some
renormalization of r0 and M0 (see figure 5(b)). In other words,
one can replace integration of equation (2) by introduction of
an effective r0, which is not necessarily equal to the average
grain radius. This may lead to some errors in the absolute value
of λ, but it is not affecting its temperature dependence.

4.2. Magnetization in low magnetic fields

Equation (2) gives M as a function of λ/r0, while experiments
provide the M(T ) curves. In the present analysis, we assume
that at temperatures close to Tc, the temperature dependence of
λ follows predictions of Ginzburg–Landau theory:

λ(T ) = λ
(0)

GL/
√

1 − τ (4)

with τ = T/Tc.
Substituting equation (4) in equation (2), we obtain

M(T )

M0
= 1 − 3λ

(0)
GL

r0
√

1 − τ

×
(

coth
r0

√
1 − τ

λ
(0)
GL

− λ
(0)

GL

r0
√

1 − τ

)
. (5)

Equation (5) may straightforwardly be employed for the
analysis of experimental M(T ) data. There are three adjustable
parameters in equation (5), which are not known a priori.
M0 changes the vertical scale of the M(T ) curve, Tc is
the value of T at which the diamagnetic moment of the
sample vanishes, and λ

(0)
GL/r0 describes the curvature of the

M(T ) curve. Because these parameters are related to rather
different characteristics of the curve, all of them can be reliably
evaluated. We also note some rounding of the M(T ) curve at
temperatures very close to Tc (see the inset of figure 6). The
corresponding data points were not used in the analysis.

As is demonstrated in figure 6, equation (5) provides
a rather good approximation to experimental data at
temperatures T � 85 K. This allows for a precise evaluation of

Figure 5. (a) Grain size distributions according to equation (3). The vertical lines indicate average values of radii (r0) for two asymmetric
distributions. (b) The normalized magnetic response M/M0 as a function of r0/λ calculated for model distributions described by equation (3)
and presented in figure 5(a). The solid line shows the result for a single sphere.
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Figure 6. High temperature part of the M(T ) curve for the sample
Y#2. The solid line is a fit of equation (5) to experimental data. Only
data points marked by closed symbols were used for fitting. The
resulting values of Tc and r0 are indicated in the figure. The inset
shows M(T ) data at temperatures very close to Tc. The straight line
is the best linear fit to data measured at 90.5 K < T < 91.2 K. This
fit results in Tc = (91.33 ± 0.03) K.

the superconducting critical temperature for both samples with
T (1)

c = (91.19 ± 0.08) K (Y#1) and T (2)
c = (91.31 ± 0.05) K

(Y#2). Amazingly, the ratios r0/λ
(0)
GL turned out to be identical

for the two samples. Because the samples were prepared
under the same conditions, identical grain size distributions are
expected. At the same time, very close values of r0 for both
samples obtained as a result of the analysis of magnetization
data may be considered as confirmation of the validity of this
approach.

According to equation (2), the magnetic moment is
inversely proportional to λ2 if λ(T ) > r . Taking into
account that the temperature dependence of λ is expressed by
equation (4), we get M ∼ (1 − T/Tc). Because λ diverges
at T = Tc, the condition λ(T ) > r is always fulfilled in
the vicinity of Tc. As may be seen in the inset of figure 6,
high temperature data may be very well approximated by a
straight line. Linear extrapolation to M = 0 gives T (2)

c =
(91.33 ± 0.03) K, which is in excellent agreement with T (2)

c =
(91.31 ± 0.05) K obtained by fitting of experimental data with
equation (5) over a much wider temperature range.

4.3. Magnetization in high magnetic fields

Here we use reversible magnetization data collected in
magnetic fields 1 kOe � H � 50 kOe in order to evaluate
the temperature dependence of the normalized upper critical
field Hc2. A scaling procedure developed in [1] was used for
the analysis of experimental data.

The scaling procedure is based on a single assumption that
the Ginzburg–Landau parameter κ is temperature independent.
In this case, magnetizations measured at different temperatures
but in the same normalized fields H/Hc2(T ) are proportional
to Hc2(T ). According to [1], the magnetizations of a sample at
two different temperatures T and T0 are related by

M(H, T0) = M(hc2 H, T )/hc2 + c0(T )H, (6)

where hc2 = Hc2(T )/Hc2(T0) is the normalized upper critical
field and c0(T ) = χn(T0) − χn(T ) (χn is the normal state
magnetic susceptibility of the sample). It is important to
underline that in experiments χn includes also a contribution
arising from the sample holder, which may be substantial in the
case of small samples. While the first term on the right side of
equation (6) describes the properties of the mixed state of ideal
type II superconductors, the second one is introduced in order
to account for all other temperature dependent contributions
to the magnetization. By a suitable choice of hc2 and c0(T ),
individual M(H ) curves measured at different temperatures
may be merged into a single master curve Meff(H, T0). In
this way the temperature dependence of the normalized upper
critical field hc2(T ) can be obtained [1].

We measured M(T ) for different magnetic fields, as
shown in figure 4. M(T ) data can easily be converted into
M(H ) curves. Several such curves are shown in figure 7(a).
In the analysis below we use [M − M(95 K)] instead of M .
Because only the difference [χn(T0) − χn(T )] enters c0(T ),
such subtraction does not change the scaling procedure.

Figure 7(b) shows the scaled magnetization curve for the
sample Y#1. As may be seen, agreement between the values of
Meff calculated from data collected at different temperatures is
practically perfect in both cases. The Meff(H ) curve represents
the equilibrium magnetization curves for T = 85 K. While
direct measurements may provide such a curve in magnetic

Figure 7. (a) Examples of the M(H) curves for the sample Y#1. The solid lines are guides to the eye. ((b), (c)) Meff(85 K) as a function of
the normalized field for samples Y#1, Y#2, respectively. Different symbols correspond to Meff calculated from M(H) data collected at
different temperatures.
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Figure 8. The upper critical field normalized by Tc(dHc2/dT )T =Tc as
a function of T/Tc. The solid line is taken from [1]. The inset shows
the region near Tc on expanded scales. The solid line in the inset is
the best linear fit to data points at T � 87 K. The resulting value of
Tc is indicated in the figure.

fields 3 kOe � H � 50 kOe, the scaling procedure allows
one to establish it in a magnetic field range 10 times wider.

The resulting hc2(T ) dependence for one of the samples
is shown in the inset of figure 8. At T � 87 K, hc2 is
a linear function of temperature. This linearity allows for a
rather accurate evaluation of Tc by extrapolation of hc2(T ) to
hc2 = 0. As a result we obtain T (1)

c = (91.16 ± 0.05) K.
This value is practically the same as T (1)

c = (91.19 ± 0.08) K
evaluated from low field M(T ) measurements as shown in
figure 6. A similar procedure for the sample Y#2 results
in T (2)

c = (91.26 ± 0.05) K. This value is again in very
good agreement with the result of low field measurements (see
figure 6).

Because the two samples have slightly different critical
temperatures, we plot in figure 8 the normalized upper critical
field as a function of T/Tc. For this graph, Hc2 was normalized
by Tc(dHc2/dT )T =Tc . As may be seen, the curves for two
samples match each other perfectly.

It was established earlier that considering the Hc2(T )

curves, numerous high Tc superconductors may be divided
into two groups with practically identical normalized Hc2(T )

curves for each of the groups [1, 16–18]. The solid line in
figure 8, which is taken from [1], represents such a curve for
the larger group. As may be seen in figure 8, the present results
for ceramic samples are fully consistent with this curve.

5. Discussion

5.1. Evaluation of Tc

As was demonstrated above, scaling of the M(H ) curves
allows us to establish temperature dependences of the
normalized upper critical field and to evaluate Tc by
extrapolation of hc2(T ) to hc2 = 0. The value of Tc can
also be evaluated from low field M(T ) measurements, as
is demonstrated in figure 6. The comparison of these two
analyses is presented in table 1.

Table 1. Summary of the evaluation of Tc.

Evaluation method Sample Y#1 Sample Y#2

Tc from low field M(T ) data 91.19 ± 0.08 91.31 ± 0.05
Tc from hc2(T ) curves 91.16 ± 0.05 91.26 ± 0.05

We emphasize that Tc was evaluated from two completely
different sets of experimental data, which correspond to
different physical processes. We argue that the close agreement
between the two is convincing evidence that both approaches
correctly interpret experimental results. As may be seen in
table 1, Tc evaluated from the hc2(T ) curves is slightly below
the low field estimate. The difference, however, is too small to
be speculated on.

5.2. The grain size and the r0/λ ratio

As was already discussed (sections 3 and 4), magnetization
measurement allows for evaluation of λ/r0 where r0 is the
effective grain radius in the direction perpendicular to the
magnetic field. Because in our case the grains have irregular
shapes and they are not oriented, reliable estimations of the
absolute value of λ are not feasible. We can, however, move
in the opposite direction and use literature values of λ in
order to evaluate r0. This is especially interesting because,
as we discuss below, magnetization measurements provide
three independent ways of evaluation of r0 and comparison
of the resulting values may serve as a consistency check of
the theoretical approach. In order to distinguish the different
evaluations of r0, we shall use upper indexes.

The first estimate of the grain size, discussed in section 3,
is independent of the magnetic field penetration depth and
stems from the fact that in order that the mixed state in
separated grains can be created, their size in the direction
perpendicular to the magnetic field must be about twice
larger than the size of the magnetic flux quantum D0 =√

�0/H [3, 4]. If grains are too small, no vortices can
be created and the sample magnetization M(T ) has to be
reversible. In the opposite case, M(T ) is irreversible. Taking
into account that the M(T ) curves measured in fields H �
3 Oe are practically reversible, while those in fields H � 30 Oe
are clearly irreversible (see figure 3), we obtain r (1)

0 > 1 μm
(see section 3).

The second estimate was obtained from the fit of the M(T )

curve at T > 85 K (see figure 6). This gives r0 = 11.9λ
(0)
GL.

The value of λ
(0)

GL does not have real physical meaning and
it cannot be measured directly; however, it can be calculated
from λ(T ) data in the higher temperature range, in which
the temperature dependence of λ follows equation (4). Using
results of [20], we obtain λ

(0)
GL = 0.1 μm. Considering λ/r0 in

such materials as Y-123, the anisotropy of λ has to be taken into
account. In Y-123, the value of λ for currents flowing in the c-
direction is λc ∼ 7λab [19]. At higher temperatures, at which
λc > r0, the situation is simplified by a 1/λ2 dependence of
M (see equation (2)). In this case, the main contribution to M
arises from grains with ab-planes approximately perpendicular
to H . In this temperature range, averaging leads to λeff ≈

6
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Figure 9. Micrograph of one of the samples. The circle radius
corresponds to our estimation of the grain size (2r0 = 4 μm).

Table 2. Summary of r0 results.

Evaluation method r0 (μm)

Onset of irreversibility 1 < r (1)

0 < 3
M(T ) at T > 85 K r (2)

0 ≈ 2

dM/dH at T = 4.5 K r (3)

0 ≈ 1.5

1.8λab. This gives us r (2)

0 ≈ 2 μm in good agreement with
the previous estimate.

In fact, there is one more way to evaluate the grain
size. As is demonstrated in figure 2, there is a magnetic
field range in which the sample magnetization is reversible
at low temperatures. In these fields, there are no vortices
inside grains and the difference between the ideal Meissner
state (χ = −1/4π ) and the sample magnetization may also
be used for evaluation of r0/λ.

At low temperatures, both λc and λab are sufficiently small
and, according to equation (2), averaging is dependent on
the actual value r0. In the following, we take r0 = 2 μm
as was estimated above. Taking λc = 7λab and using the
commonly accepted value of λab(0 K) = 0.15 μm [21], we
obtain λeff ≈ 2.7λab.

This estimation of the grain size is the only result of this
work, which relies on the absolute value of M . In this case,
we need to know an effective demagnetizing factor Neff for our
sample consisting of a large number of non-interacting grains.
For the following estimate we take Neff = 1/3. From the slope
dM/dH , we obtain M/M0 = 0.39. Substituting this value
in equation (3), we get r0 = 3.6λeff. Using the value of λeff

evaluated in the previous paragraph, we obtain r (3)
0 ≈ 1.5 μm.

The resulting values of r0 are summarized in table 2. All
three values are in very good agreement with each other.

Figure 9 shows a micrograph of one of spheres, which
was intentionally broken. The circle diameter corresponds to
r (2)

0 , which is the most reliable estimate. Taking into account
the approximate character of the consideration, this agreement
must be considered as more than satisfactory.

5.3. The temperature dependence of λ

While the absolute values of λ can hardly be evaluated from
data collected on ceramic samples, the fact that at Tc − T �

Tc, λ(T ) follows predictions of the Ginzburg–Landau theory
is established quite reliably (see figure 6). As may be seen,
M(T ) data points follow the theoretical curve at T > 85 K.
Furthermore, at temperatures very close to Tc, the M(T )

dependence is perfectly linear, as is expected from the theory.
Because in this temperature range λc � λab ∼ r0 and

M ∼ 1/λ2, the contribution to the sample magnetization
arising from grains with ab-planes oriented along the field is
negligibly small and can be disregarded. This means that our
results for λ(T ) are related to λab.

The λab(T ) dependence obtained in this work is in
agreement with some studies [5–7, 20, 22–25] and in
disagreement with data from others [26–28]. We point out
that the behavior described by equation (4) was observed
for grain aligned samples [6, 7], films [22–24] and single
crystals [20, 25]. At the same time, the results of [26–28]
provide λab ∼ 1/(1 − T/Tc)

1/3 instead of equation (4). As
far as we are aware this controversy is still unresolved.

6. Conclusion

It was demonstrated that low density ceramic samples of
YBa2Cu3O7−x may in certain conditions be considered as
systems of non-interacting grains. It was also shown that low
field magnetization measurements on such samples provide
three independent ways of evaluating the grain size (see
table 2). All three values are in good agreement with each
other and, what is more important, the evaluation of r0 is in
good agreement with the real sample structure (figure 9).

At temperatures close to Tc, low field magnetization data
may be very well described assuming that the temperature
dependence of λ follows the Ginzburg–Landau theory
(figure 6). Although ceramic samples with non-oriented grains
were used, it was possible to demonstrate that the above
mentioned result is related to λab.

The analysis of high field magnetization data allowed us to
establish the temperature dependence of the normalized upper
critical field. In this work, the upper limit of the temperature
range investigated was extended to T ≈ 0.995Tc and it was
demonstrated that the Hc2(T ) dependence is a linear function
of T at T � 0.95Tc. This result is in agreement with the
Ginzburg–Landau theory. We note that both Hc2 and λab

follow the Ginzburg–Landau theory at approximately the same
temperatures.

Magnetization measurements presented in this work
allowed for evaluation of Tc from two completely different sets
of experimental data. It turned out that the two results are in
perfect agreement (see table 1).
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Brütsch R and Keller H 2006 Phys. Rev. Lett. 97 157002

[14] Zuev Y L, Kuznetsova V A, Prozorov R, Vinnette M D,
Lobanov M V, Christen D K and Thompson J R 2007
unpublished

(Zuev Y L, Kuznetsova V A, Prozorov R, Vinnette M D,
Lobanov M V, Christen D K and Thompson J R 2007
Preprint cond-mat0707.1905)

[15] Shoenberg D 1940 Proc. R. Soc. A 175 49
[16] Landau I L and Ott H R 2003 Physica C 385 544
[17] Landau I L and Ott H R 2004 Physica C 411 83
[18] Landau I L and Keller H 2007 Physica C 458 38
[19] Zheng D N, Campbell A M, Johnson J D, Cooper J R,

Blunt F J, Porch A and Freeman P A 1994 Phys. Rev. B
49 1417

[20] Srikanth H, Zhai Z, Sridhar S, Erb A and Walker E 1998
Phys. Rev. B 57 7986

[21] Khasanov R, Eshchenko D G, Luetkens H, Morenzoni E,
Prokscha T, Suter A, Garifianov N, Mali M, Roos J,
Conder K and Keller H 2004 Phys. Rev. Lett. 92 057602

[22] Hensen S, Müller G, Rieck C T and Scharnberg K 1997
Phys. Rev. B 56 6237

[23] Andreone A, Cantoni C, Cassinese A, Di Chiara A and
Vaglio R 1997 Phys. Rev. B 56 7874

[24] Paget K M, Boyce B R and Lemberger T R 1999 Phys. Rev. B
59 6545

[25] Trunin M R, Zhukov A A, Emel’chenko G A and
Naumenko I G 1997 Pis. Zh. Eksp. Teor. Fiz. 65 893

Trunin M R, Zhukov A A, Emel’chenko G A and
Naumenko I G 1997 JETP Lett. 65 938

[26] Kamal S, Bonn D A, Goldenfeld N, Hirschfeld P J,
Liang R and Hardy W N 1994 Phys. Rev. Lett. 73 1845

[27] Kamal S, Liang R, Hosseini A, Bonn D A and Hardy W N
1998 Phys. Rev. B 58 R8933

[28] Anlage S M, Mao J, Booth J C, Wu D H and Peng J L 1996
Phys. Rev. B 53 2792

8

http://dx.doi.org/10.1103/PhysRevB.66.144506
http://dx.doi.org/10.1103/PhysRev.67.351
http://dx.doi.org/10.1590/S0103-97332002000400004
http://dx.doi.org/10.1103/PhysRevB.75.174523
http://dx.doi.org/10.1016/0921-4534(88)90385-1
http://dx.doi.org/10.1103/PhysRevB.54.R12721
http://dx.doi.org/10.1103/PhysRevB.57.13422
http://dx.doi.org/10.1103/PhysRevB.53.R2999
http://dx.doi.org/10.1016/0921-4534(93)90837-G
http://dx.doi.org/10.1103/PhysRevLett.93.157004
http://dx.doi.org/10.1103/PhysRevB.72.094504
http://dx.doi.org/10.1103/PhysRevB.72.224509
http://dx.doi.org/10.1103/PhysRevLett.97.157002
http://arxiv.org/abs/cond-mat0707.1905
http://dx.doi.org/10.1098/rspa.1940.0043
http://dx.doi.org/10.1016/S0921-4534(02)02291-8
http://dx.doi.org/10.1016/j.physc.2004.06.007
http://dx.doi.org/10.1016/j.physc.2007.03.374
http://dx.doi.org/10.1103/PhysRevB.49.1417
http://dx.doi.org/10.1103/PhysRevB.57.7986
http://dx.doi.org/10.1103/PhysRevLett.92.057602
http://dx.doi.org/10.1103/PhysRevB.56.6237
http://dx.doi.org/10.1103/PhysRevB.56.7874
http://dx.doi.org/10.1103/PhysRevB.59.6545
http://dx.doi.org/10.1134/1.567453
http://dx.doi.org/10.1103/PhysRevLett.73.1845
http://dx.doi.org/10.1103/PhysRevB.58.R8933
http://dx.doi.org/10.1103/PhysRevB.53.2792

	1. Introduction
	2. Experimental details
	3. Experimental results
	4. Analysis of experimental data
	4.1. Superconducting grains in weak magnetic fields
	4.2. Magnetization in low magnetic fields
	4.3. Magnetization in high magnetic fields

	5. Discussion
	5.1. Evaluation of T_{c}
	5.2. The grain size and the r_0/lambda ratio
	5.3. The temperature dependence of lambda

	6. Conclusion
	Acknowledgments
	References

